Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Immunobiology ; 229(3): 152802, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38569452

RESUMO

BACKGROUND: Glioma, the most frequent and malignant central nervous system (CNS) cancer, has a bad outcome. Proteasome 26S subunit ATPase 2 (PSMC2) is an essential part of the 26S proteasome and promotes the development of several tumors. However, the pathway and function of PSMC2 in glioma have not been unelucidated. METHODS: This study analyzed PSMC2 expression in glioma tissues and its predictive significance for patients. We examined the link between PSMC2 and DNA methylation, immune cell infiltration, tumor immune cycle, immune cell homeostasis, and immune checkpoints. Subsequently, immunohistochemistry and in vitro trials were employed to validate the expression, prognostic potential, and function of PSMC2 in glioma. The mechanisms of PSMC2 in glioma were further explored. RESULTS: Our study revealed that PSMC2 expression increased in glioma tissues contrasted with healthy tissues, and patients with high PSMC2 glioma exhibited poor overall survival (OS) compared to the low-PSMC2 group. Immune profile analysis revealed that PSMC2 was positively related to immunosuppressive cell infiltration and immune checkpoints and adversely related to the cancer immune cycle and immune cell homeostasis. In cell-based investigations, the inhibition of PSMC2 was found to effectively suppress the aggressiveness and proliferation of glioma cell lines while also enhancing cell cycle arrest and promoting cell death. Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and in vitro experiments showed that PSMC2 promoted glioma development through the PI3K/AKT/mTOR pathway. CONCLUSIONS: PSMC2 was upregulated in glioma and promoted cancer progression by modulating the tumor immune microenvironment, cancer cell biological behavior, immune cell homeostasis, and the PI3K/AKT/mTOR pathway, providing a new option to treat glioma.

2.
Adv Sci (Weinh) ; : e2310263, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647431

RESUMO

Metal halide perovskites (MHPs) are considered as promising candidates in the application of nonvolatile high-density, low-cost resistive switching (RS) memories and artificial synapses, resulting from their excellent electronic and optoelectronic properties including large light absorption coefficient, fast ion migration, long carrier diffusion length, low trap density, high defect tolerance. Among MHPs, 2D halide perovskites have exotic layered structure and great environment stability as compared with 3D counterparts. Herein, recent advances of 2D MHPs for the RS memories and artificial synapses realms are comprehensively summarized and discussed, as well as the layered structure properties and the related physical mechanisms are presented. Furthermore, the current issues and developing roadmap for the next-generation 2D MHPs RS memories and artificial synapse are elucidated.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38381309

RESUMO

Glioma has a high mortality and can hardly be completely cured. Radix Paeoniae Rubra (RPR) is a prevalent component in traditional Chinese medicine used for tumor treatments. We explored the mechanism of RPR in treating glioma using network pharmacology and experiments. A network pharmacology approach was used to screen active ingredients, targets of RPR and glioma. We then constructed a herb-active ingredient-target-pathway network and conducted protein-protein interaction (PPI) network analysis, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Molecular docking was also performed. Using CCK-8, colony formation, and xenograft experiments, we evaluated the effect of RPR on glioma. The involved pathway and proteins were identified by Western blot. From public databases, we identified nine active RPR ingredients and 40 overlapping targets among 109 RPR targets and 1360 glioma-associated targets. The PPI analysis revealed ten targets, such as AKT1, TP53, and VEGFA, which were identified as hub genes. The results from GO and KEGG analysis highlighted the involvement of the PI3K/AKT pathway. A herb-active ingredient-target-pathway network was constructed. By docking molecular structures, six suitable conformations have been identified. The RPR extract demonstrated anti-tumor properties by inhibiting glioma cell proliferation in vitro and in vivo, likely achieved by suppressing the phosphorylation of the PI3K/AKT signaling pathway. RPR concurrently downregulated the phosphorylation level of AKT1 and the protein expression level of VEGFA, while upregulating the expression of P53 in the U251 cell line. Utilizing network pharmacology and molecular docking, our study not only predicted the impact of RPR on glioma but also delineated the herb-active ingredient-target-pathway network. Experimentally, we confirmed that RPR may exert its anti-tumor properties by inhibiting the phosphorylation of the PI3K/AKT pathway, including AKT1, and by regulating the expression levels of VEGFA and P53.

4.
Environ Sci Pollut Res Int ; 31(9): 12933-12947, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236564

RESUMO

At present, eutrophication is increasingly serious, so it is necessary to effectively reduce nitrogen and phosphorus in water bodies. In this study, a pyrite/polycaprolactone-based mixotrophic denitrification (PPMD) system using pyrite and polycaprolactone (PCL) as electron donors was developed and compared with pyrite-based autotrophic denitrification (PAD) system and PCL-based heterotrophic denitrification (PHD) system through continuous flow experiment. The removal efficiency of NO3--N (NRE) and PO43--P (PRE) and the contribution proportion of PAD in the PPMD system were significantly increased by prolonging hydraulic retention time (HRT, from 1 to 48 h). When HRT was equal to 24 h, the PPMD system conformed to the zero-order kinetic model, so NRE and PRE were mainly limited by the PAD process. When HRT was equal to 48 h, the PPMD system met the first-order kinetic model with NRE and PRE reaching 98.9 ± 1.1% and 91.8 ± 4.5%, respectively. When HRT = 48 h, the NRE and PRE by PAD system were 82.7 ± 9.1% and 88.5 ± 4.7%, respectively, but the effluent SO42- concentration was as high as 152.1 ± 13.7 mg/L (the influent SO42- concentration was 49.2 ± 3.3 mg/L); the NRE by PHD system was 98.5 ± 1.7%, but the PO43--P could not be removed ideally. The concentrations of NO3--N, total nitrogen, PO43--P, and SO42- in the PPMD system also showed distinct changes along the reactor column. In addition, the microbial diversity analysis showed that prolonging HRT (from 24 to 48 h) increased the abundance of autotrophic denitrifying microorganisms in the PPMD system, ultimately increasing the contribution proportion of PAD.


Assuntos
Reatores Biológicos , Desnitrificação , Ferro , Sulfetos , Nitratos/análise , Processos Autotróficos , Nitrogênio
5.
Cancer Biomark ; 38(4): 505-522, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980651

RESUMO

BACKGROUND: STEAP3 is a metal reductase located on the plasma membrane close to the nucleus and vesicles. Despite numerous studies indicating the involvement of STEAP3 in tumor advancement, the prognostic value of STEAP3 in glioma and the related mechanisms have not been fully investigated. METHODS: Initially, we examined the correlation between STEAP3 expression and the survival rate in various glioma datasets. To assess the prognostic capability of STEAP3 for one-year, three-year, and five-year survival, we created receiver operating characteristic (ROC) curves and nomograms. Additionally, an investigation was carried out to examine the mechanisms that contribute to the involvement of STEAP3 in gliomas, including immune and enrichment analysis. To confirm the expression of STEAP3 in LGG and GBM, tumor tissue samples were gathered, and cell experiments were conducted to explore the impacts of STEAP3. The function of STEAP3 in the tumor immune microenvironment was assessed using the M2 macrophage infiltration assay. RESULTS: We found that STEAP3 expressed differently in group with different age, tumor grade IDH and 1p19q status. The analysis of survival illustrated that glioma patients with high level of STEAP3 experienced shorter survival durations, especially for IDH-mutant astrocytoma. Cox analysis demonstrated that STEAP3 had potential to act as an independent prognostic factor for glioma. The predictive value of STEAP3 for glioma prognosis was demonstrated by ROC curves and nomogram. Immune analysis showed that STEAP3 may lead to a suppressive immune microenvironment through the control of immunosuppressive cell infiltration and Cancer-Immunity Cycle. Combining enrichment analysis and cell experiments, we discovered that STEAP3 can promote glioma progression through regulation of PI3K-AKT pathway and M2 macrophage infiltration. CONCLUSION: STEAP3 plays significant roles in the advancement of glioma by regulating immune microenvironment and PI3K-AKT pathway. It has the potential to serve as a therapy target for glioma.


Assuntos
Glioma , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Proto-Oncogênicas c-akt , Prognóstico , Glioma/genética , Biomarcadores , Microambiente Tumoral/genética
6.
Polymers (Basel) ; 15(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38006098

RESUMO

Facing the era of information explosion and the advent of artificial intelligence, there is a growing demand for information technologies with huge storage capacity and efficient computer processing. However, traditional silicon-based storage and computing technology will reach their limits and cannot meet the post-Moore information storage requirements of ultrasmall size, ultrahigh density, flexibility, biocompatibility, and recyclability. As a response to these concerns, polymer-based resistive memory materials have emerged as promising candidates for next-generation information storage and neuromorphic computing applications, with the advantages of easy molecular design, volatile and non-volatile storage, flexibility, and facile fabrication. Herein, we first summarize the memory device structures, memory effects, and memory mechanisms of polymers. Then, the recent advances in polymer resistive switching materials, including single-component polymers, polymer mixtures, 2D covalent polymers, and biomacromolecules for resistive memory devices, are highlighted. Finally, the challenges and future prospects of polymer memory materials and devices are discussed. Advances in polymer-based memristors will open new avenues in the design and integration of high-performance switching devices and facilitate their application in future information technology.

7.
Med ; 4(12): 928-943.e5, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38029754

RESUMO

BACKGROUND: Rapidly dividing cells are more sensitive to radiation therapy (RT) than quiescent cells. In the failing myocardium, macrophages and fibroblasts mediate collateral tissue injury, leading to progressive myocardial remodeling, fibrosis, and pump failure. Because these cells divide more rapidly than cardiomyocytes, we hypothesized that macrophages and fibroblasts would be more susceptible to lower doses of radiation and that cardiac radiation could therefore attenuate myocardial remodeling. METHODS: In three independent murine heart failure models, including models of metabolic stress, ischemia, and pressure overload, mice underwent 5 Gy cardiac radiation or sham treatment followed by echocardiography. Immunofluorescence, flow cytometry, and non-invasive PET imaging were employed to evaluate cardiac macrophages and fibroblasts. Serial cardiac magnetic resonance imaging (cMRI) from patients with cardiomyopathy treated with 25 Gy cardiac RT for ventricular tachycardia (VT) was evaluated to determine changes in cardiac function. FINDINGS: In murine heart failure models, cardiac radiation significantly increased LV ejection fraction and reduced end-diastolic volume vs. sham. Radiation resulted in reduced mRNA abundance of B-type natriuretic peptide and fibrotic genes, and histological assessment of the LV showed reduced fibrosis. PET and flow cytometry demonstrated reductions in pro-inflammatory macrophages, and immunofluorescence demonstrated reduced proliferation of macrophages and fibroblasts with RT. In patients who were treated with RT for VT, cMRI demonstrated decreases in LV end-diastolic volume and improvements in LV ejection fraction early after treatment. CONCLUSIONS: These results suggest that 5 Gy cardiac radiation attenuates cardiac remodeling in mice and humans with heart failure. FUNDING: NIH, ASTRO, AHA, Longer Life Foundation.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , Camundongos , Animais , Remodelação Ventricular , Cardiomiopatias/complicações , Insuficiência Cardíaca/radioterapia , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Função Ventricular , Fibrose
8.
Environ Pollut ; 337: 122541, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717893

RESUMO

Persistent organochlorine pesticide (OCP) has been associated with type 2 diabetes (T2D), and genetic polymorphism might modify such an association. However, prospective evidence remains scarce. We conducted a nested case-control study comprising 1006 incident diabetic cases and 1006 matched non-diabetic controls [sex and age (±5 years)] from 2008 to 2013 (mean follow-up period: ∼4.6 years) based on the Dongfeng-Tongji cohort in Shiyan City of China, determined baseline levels of nineteen OCPs, and examined the associations of circulating OCPs, both individually and collectively, with incident T2D risk. We also constructed overall genetic risk score (GRS) based on 161 T2D-associated variants and five pathway-specific cluster GRSs based on established variants derived from the Asian population. Compared with the first quartile of serum ß-BHC levels, the multivariable-adjusted ORs (95% CIs) of incident T2D risk in the second, third, and fourth quartiles were 0.98 (0.70-1.39), 1.43 (0.99-2.07), and 1.75 (1.14-2.68), respectively (FDR-adjusted Ptrend = 0.03). A positive association was observed between serum OCP mixture and incident T2D risk and can be largely attributed to ß-BHC. Furthermore, serum ß-BHC and p,p'-DDE showed significant interactions with the GRS for lipodystrophy, a T2D-related pathway representing fat redistribution to viscera, on T2D risk (Pinteraction < 0.05). In conclusion, higher circulating OCP levels were independently associated with an increased risk of T2D, with ß-BHC possibly being the major contributor. Genetic predisposition to T2D-related morbidity, such as visceral adiposity, should be considered when assessing the risk of T2D conferred by OCPs.


Assuntos
Diabetes Mellitus Tipo 2 , Hidrocarbonetos Clorados , Praguicidas , Humanos , Predisposição Genética para Doença , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Estudos Prospectivos , Estudos de Casos e Controles , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Diclorodifenil Dicloroetileno/análise
9.
Front Oncol ; 13: 1228426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766864

RESUMO

Background: Arylsulfatase D (ARSD) belongs to the sulfatase family and plays a crucial role in maintaining the proper structure of bone and cartilage matrix. Although several researches have revealed the functions of ARSD in tumor progression, the prognostic value of ARSD in glioma and the related mechanisms have not been fully investigated. Methods: We performed a pan-cancer analysis of ARSD, and investigated the relationship between expression of ARSD and overall survival (OS) in multiple glioma datasets. ROC curves and nomograms were created to investigate the predictive capacity of ARSD. Immune and analysis were conducted to investigate the mechanisms underlying the roles of ARSD in glioma. Glioma tissue samples were collected to verify the expression of ARSD in glioma, while the functions of ARSD were explored using cell experiment. M2 macrophage infiltration assay was used to determine the relation between ARSD and tumor immune microenvironment. Results: Survival analysis indicated that individuals with high ARSD expression in glioma had a shorter survival time. Cox analysis showed that ARSD had a good ability for predicting prognosis in glioma. Immune analysis suggested that ARSD could regulate immune cell infiltration and affect the Cancer-Immunity Cycle to create an immunosuppressive environment. Combined with cell experiment and bioinformatic analysis, we found that ARSD can promote glioma progression through regulation of JAK2/STAT3 pathway and M2 macrophage infiltration. Conclusion: Our study found that ARSD can promote glioma development by regulating immune microenvironment and JAK2/STAT3 signaling pathway, which provided a potential therapy target for glioma treatment.

10.
Ecotoxicol Environ Saf ; 265: 115493, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37729699

RESUMO

Prospective epidemiological evidence was lacking on the association of phthalates (PAEs) exposure with incident type 2 diabetes mellitus (T2DM) risk. In present nested case-control study, we identified 1006 T2DM cases and matched 1006 controls based on Dongfeng-Tongji cohort study, and 6 PAEs were detected in baseline serum. The conditional logistic regression model, Bayesian kernel machine regression (BKMR) model and Quantile-based g-computation were applied to evaluate the associations of determined PAEs, either as individuals or as a mixture, with incident T2DM risk. Subgroup analysis was conducted to identify the potential sensitive population of PAEs effects on T2DM. After multiple adjustment, no statistically significant association was observed between single or mixture of PAEs and incident T2DM risk in the whole population. However, serum levels of Di-n-butyl phthalate (DnBP) [OR= 2.06; 95% CI: (1.11-3.96)], Σdibutyl phthalate (ΣDBP) [OR= 1.96; 95% CI: (1.06-3.76)], and Σlow-molecular- weight phthalate (ΣLMW) [OR= 2.27; 95% CI: (1.17-4.57)] were significantly associated with T2DM in current drinker group. Moreover, significant potential interactions were observed among Di-iso-butyl phthalate (DiBP), DnBP, Butyl-benzyl phthalate (BBP), ΣDBP, and ΣLMW with drinking status on T2DM risk (P for interaction = 0.036, 0.005, 0.049. 0.010, and 0.005). We did not find significant associations between serum PAEs levels and T2DM in the whole population. However, current alcohol drinkers expose to higher levels of DnBP, ΣDBP, and ΣLMW had higher risk of T2DM.

11.
Cell Mol Biol (Noisy-le-grand) ; 69(5): 80-86, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571896

RESUMO

Gliomas are the most common primary malignant brain tumors, with a poor prognosis and high mortality, and there is no effective treatment regimen. A number of studies have shown that replication protein A3 (RPA3) can regulate DNA replication and that the abnormal expression of RPA3 can lead to genomic instability and induce the development of a variety of tumors. However, the relationship between RPA3 and gliomas and the mechanism of action remains unclear. In this study, we investigated the role of RPA3 in the development of gliomas and the possible mechanism. The Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and the Gene Expression Omnibus (GEO) databases were used to analyze the expression level of RPA3 and its correlation with clinical prognosis. A univariate Cox regression model was established to predict the prognosis of glioma patients and analyze the correlation between RPA3 and immune cell infiltration and activation. Immunohistochemistry, RT-PCR, and Western blot (WB) were used to detect the expression of RPA3 in glioma specimens. After knocking down and overexpressing RPA3 with plasmids, effects on glioma cell proliferation, migration and invasive capacity were investigated in vitro. The possible molecular mechanisms were analyzed using WB. Results showed that the expression of RPA3 in glioma tissue and cells was significantly higher than that in normal glial cells and was positively correlated with the poor prognosis of patients with gliomas. The overexpression of RPA3 expression activated the phosphatidylinositol 3-kinase (PI3K)-AKT-mammalian target of the rapamycin (mTOR) pathway by promoting the phosphorylation of PI3K, AKT, and mTOR, thereby promoting the proliferation, migration and invasion of glioma cells. In conclusion, RPA3 is highly expressed in gliomas and promotes the proliferation, migration and invasion of gliomas by activating the PI3K-AKT-mTOR pathway. Therefore, RPA3 may be a prognostic biomarker and therapeutic target for gliomas.


Assuntos
Glioma , Fosfatidilinositol 3-Quinase , Humanos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Glioma/patologia , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas de Ligação a DNA
12.
Environ Res ; 236(Pt 2): 116848, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37558114

RESUMO

With pyrite (FeS2) and polycaprolactone (PCL) as electron donors, three denitrification systems, namely FeS2-based autotrophic denitrification (PAD) system, PCL-supported heterotrophic denitrification (PHD) system and split-mixotrophic denitrification (PPMD) system, were constructed and operated under varying hydraulic retention times (HRT, 1-48 h). Compared with PAD or PHD, the PPMD system could achieve higher removals of NO3--N and PO43--P, and the effluent SO42- concentration was greatly reduced to 7.28 mg/L. Similarly, the abundance of the dominant genera involved in the PAD (Thiobacillus, Sulfurimonas, and Ferritrophicum, etc.) or PHD (Syntrophomonas, Desulfomicrobium, and Desulfovibrio, etc.) process all increased in the PPMD system. Gene prediction completed by PICRUSt2 showed that the abundance of the functional genes involved in denitrification and sulfur oxidation all increased with the increase of HRT. This also accounted for the increased contribution of autotrophic denitrification to total nitrogen removal in the PPMD system. In addition, the analysis of metabolic pathways disclosed the specific conversion mechanisms of nitrogen and sulfur inside the reactor.


Assuntos
Desnitrificação , Nitratos , Processos Autotróficos , Nitrogênio , Enxofre , Reatores Biológicos
13.
J Hazard Mater ; 459: 132082, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37473566

RESUMO

Emerging evidence revealed that pyrethroids and circulating lipid metabolites are involved in incident type 2 diabetes (T2D). However, the pyrethroid-associated lipid profile and its potential role in the association of pyrethroids with T2D remain unknown. Metabolome-wide association or mediation analyses were performed among 1006 pairs of T2D cases and matched controls nested within the prospective Dongfeng-Tongji cohort. We identified 59 lipid metabolites significantly associated with serum deltamethrin levels, of which eight were also significantly associated with serum fenvalerate (false discovery rate [FDR] < 0.05). Pathway enrichment analysis showed that deltamethrin-associated lipid metabolites were significantly enriched in the glycerophospholipid metabolism pathway (FDR = 0.02). Furthermore, we also found that several deltamethrin-associated lipid metabolites (i.e., phosphatidylcholine [PC] 32:0, PC 34:4, cholesterol ester 20:0, triacylglycerol 52:5 [18:2]), and glycerophosphoethanolamine-enriched latent variable mediated the association between serum deltamethrin levels and T2D risk, with the mediated proportions being 44.81%, 15.92%, 16.85%, 16.66%, and 22.86%, respectively. Serum pyrethroids, particularly deltamethrin, may lead to an altered circulating lipid profile primarily in the glycerophospholipid metabolism pathway represented by PCs and lysophosphatidylcholines, potentially mediating the association between serum deltamethrin and T2D. The study provides a new perspective in elucidating the potential mechanisms through which pyrethroid exposure might induce T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Piretrinas , Humanos , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/epidemiologia , Piretrinas/toxicidade , Lipídeos , Glicerofosfolipídeos
14.
Front Neurosci ; 17: 1191999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304011

RESUMO

Optic never fibers in the visual pathway play significant roles in vision formation. Damages of optic nerve fibers are biomarkers for the diagnosis of various ophthalmological and neurological diseases; also, there is a need to prevent the optic nerve fibers from getting damaged in neurosurgery and radiation therapy. Reconstruction of optic nerve fibers from medical images can facilitate all these clinical applications. Although many computational methods are developed for the reconstruction of optic nerve fibers, a comprehensive review of these methods is still lacking. This paper described both the two strategies for optic nerve fiber reconstruction applied in existing studies, i.e., image segmentation and fiber tracking. In comparison to image segmentation, fiber tracking can delineate more detailed structures of optic nerve fibers. For each strategy, both conventional and AI-based approaches were introduced, and the latter usually demonstrates better performance than the former. From the review, we concluded that AI-based methods are the trend for optic nerve fiber reconstruction and some new techniques like generative AI can help address the current challenges in optic nerve fiber reconstruction.

15.
Front Plant Sci ; 14: 1114266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143868

RESUMO

Introduction: Salinization affects more than 25% of the world's arable land, and Tamarix ramosissima Ledeb (T. ramosissima), the representative of Tamarix plants, is widely grown in salinized soil. In contrast, less is known about the mechanism of potassium's antioxidative enzyme activity in preventing NaCl stress damage to plants. Method: This study examined changes in root growth for T. ramosissima at 0h, 48h, and 168h, performed antioxidant enzyme activity assays, transcriptome sequencing, and non-targeted metabolite analysis to understand changes in their roots as well as changes in the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Quantitative real-time PCR (qRT-PCR) was used to identify differentially expressed genes (DEGs) and differential metabolites associated with antioxidant enzyme activities. Result: As the time increased, the results showed that compared with the 200 Mm NaCl group, the root growth of the 200 mM NaCl + 10 mM KCl group increased, the activities of SOD, POD and CAT increased the most, but the contents of hydrogen peroxide (H2O2) and Malondialdehyde (MDA) increased less. Meanwhile, 58 DEGs related to SOD, POD and CAT activities were changed during the application of exogenous K+ for 48h and 168h in T. ramosissima. Based on association analysis of transcriptomic and metabolomic data, we found coniferyl alcohol, which can act as a substrate to label catalytic POD. It is worth noting that Unigene0013825 and Unigene0014843, as POD-related genes, have positively regulated the downstream of coniferyl alcohol, and they have a significant correlation with coniferyl alcohol. Discussion: In summary, 48h and 168h of exogenous K+ applied to the roots of T. ramosissima under NaCl stress can resist NaCl stress by scavenging the reactive oxygen species (ROS) generated by high salt stress by enhancing the mechanism of antioxidant enzyme activity, relieving NaCl toxicity and maintaining growth. This study provides genetic resources and a scientific theoretical basis for further breeding of salt-tolerant Tamarix plants and the molecular mechanism of K+ alleviating NaCl toxicity.

16.
Opt Express ; 31(10): 16303-16314, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157712

RESUMO

We describe a method for the active control of terahertz (THz) waves using hybrid vanadium dioxide (VO2) periodic corrugated waveguide. Unlike liquid crystals, graphene and semiconductors and other active materials, VO2 exhibits a unique insulator-metal transition characteristic by the electric fields, optical, and thermal pumps, resulting in five orders of magnitude changes in its conductivity. Our waveguide consists of two gold coated plates with the VO2-embedded periodic grooves, which are placed in parallel with the grooves face to face. Simulations show that this waveguide can realize mode switching by changing the conductivity of the embedded VO2 pads, whose mechanism is attributed to the local resonance induced by defect mode. Such a VO2-embedded hybrid THz waveguide is favorable in practical applications such as THz modulators, sensors and optical switches, and provides an innovative technique for manipulating THz waves.

17.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239820

RESUMO

Trichomes are attractive cells for terpenoid biosynthesis and accumulation in Artemisia annua. However, the molecular process underlying the trichome of A. annua is not yet fully elucidated. In this study, an analysis of multi-tissue transcriptome data was performed to examine trichome-specific expression patterns. A total of 6646 genes were screened and highly expressed in trichomes, including artemisinin biosynthetic genes such as amorpha-4,11-diene synthase (ADS) and cytochrome P450 monooxygenase (CYP71AV1). Mapman and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that trichome-specific genes were mainly enriched in lipid metabolism and terpenoid metabolism. These trichome-specific genes were analyzed by a weighted gene co-expression network analysis (WGCNA), and the blue module linked to terpenoid backbone biosynthesis was determined. Hub genes correlated with the artemisinin biosynthetic genes were selected based on TOM value. ORA, Benzoate carboxyl methyltransferase (BAMT), Lysine histidine transporter-like 8 (AATL1), Ubiquitin-like protease 1 (Ulp1) and TUBBY were revealed as key hub genes induced by methyl jasmonate (MeJA) for regulating artemisinin biosynthesis. In summary, the identified trichome-specific genes, modules, pathways and hub genes provide clues and shed light on the potential regulatory mechanisms of artemisinin biosynthesis in trichomes in A. annua.


Assuntos
Artemisia annua , Artemisininas , Artemisia annua/genética , Tricomas/genética , Tricomas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
J Gerontol B Psychol Sci Soc Sci ; 78(9): 1493-1500, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37098210

RESUMO

OBJECTIVES: Narcissism has been associated with poorer quality social connections in late life, yet less is known about how narcissism is associated with older adults' daily social interactions. This study explored the associations between narcissism and older adults' language use throughout the day. METHODS: Participants aged 65-89 (N = 281) wore electronically activated recorders which captured ambient sound for 30 s every 7 min across 5-6 days. Participants also completed the Narcissism Personality Inventory-16 scale. We used Linguistic Inquiry and Word Count to extract 81 linguistic features from sound snippets and applied a supervised machine learning algorithm (random forest) to evaluate the strength of links between narcissism and each linguistic feature. RESULTS: The random forest model showed that the top 5 linguistic categories that displayed the strongest associations with narcissism were first-person plural pronouns (e.g., we), words related to achievement (e.g., win, success), to work (e.g., hiring, office), to sex (e.g., erotic, condom), and that signal desired state (e.g., want, need). DISCUSSION: Narcissism may be demonstrated in everyday life via word use in conversation. More narcissistic individuals may have poorer quality social connections because their communication conveys an emphasis on self and achievement rather than affiliation or topics of interest to the other party.


Assuntos
Linguística , Narcisismo , Humanos , Idoso , Comunicação , Aprendizado de Máquina , Inventário de Personalidade
19.
Environ Res ; 228: 115743, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001846

RESUMO

BACKGROUND: Previous epidemiological studies indicated that the association between polychlorinated biphenyls (PCB) and type 2 diabetes mellitus (T2DM) was inconclusive. OBJECTIVE: We investigated the association between PCBs exposure and incident T2DM in a nested case-control study, and further explored the relationship between PCBs and 5-year fasting blood glucose (FBG) changes. METHODS: Baseline concentrations of seven indicator-PCB (PCB-28, 52, 101, 118, 138, 153, 180) were measured in 1006 pairs of incident T2DM cases and matched controls nested within the Dongfeng-Tongji cohort. Conditional logistic regression models and pre-adjusted residuals method were used to assess the associations between PCBs and incident T2DM. We further computed beta coefficients (ßs) of 5-year FBG changes using multivariable generalized linear regression. RESULTS: Non-dioxin-like PCBs (NDL-PCBs) were significantly associated with higher T2DM incidence after adjustment for all covariates. Significant differences were observed for extreme quartiles comparisons (Q4 vs. Q1) of PCBs except PCB-138, and the incidence of T2DM were 1- to 3-fold higher among those in the highest versus lowest PCBs quartiles. Serum NDL-PCBs were positively associated with changes in FBG (P for overall association ≤0.01). Additionally, triglycerides mediated the associations between PCBs and T2DM incidence. CONCLUSION: Our findings showed positive associations of NDL-PCBs with incident T2DM and 5-year FBG changes. PCBs increased incident T2DM via lipid metabolic pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Dioxinas , Poluentes Ambientais , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Bifenilos Policlorados/análise , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/epidemiologia , Estudos de Casos e Controles , Poluentes Ambientais/toxicidade
20.
J Orthop Res ; 41(11): 2384-2393, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36970754

RESUMO

While recent studies showed that macrophages are critical for bone fracture healing, and lack of M2 macrophages have been implicated in models of delayed union, functional roles for specific M2 receptors have yet to be defined. Moreover, the M2 scavenger receptor CD163 has been identified as a target to inhibit sepsis following implant-associated osteomyelitis, but potential adverse effects on bone healing during blockage therapy have yet to be explored. Thus, we investigated fracture healing in C57BL/6 versus CD163-/- mice using a well-established closed, stabilized, mid-diaphyseal femur fracture model. While gross fracture healing in CD163-/- mice was similar to that of C57BL/6, plain radiographs revealed persistent fracture gaps in the mutant mice on Day 14, which resolved by Day 21. Consistently, 3D vascular micro-CT demonstrated delayed union on Day 21, with reduced bone volume (74%, 61%, and 49%) and vasculature (40%, 40%, and 18%) compared to C57BL/6 on Days 10, 14, and 21 postfracture, respectively (p < 0.01). Histology confirmed large amounts of persistent cartilage in CD163-/- versus C57BL/6 fracture callus on Days 7 and 10 that resolves over time, and immunohistochemistry demonstrated deficiencies in CD206+ M2 macrophages. Torsion testing of the fractures confirmed the delayed early union in CD163-/- femurs, which display decreased yield torque on Day 21, and a decreased rigidity with a commensurate increase in rotation at yield on Day 28 (p < 0.01). Collectively, these results demonstrate that CD163 is required for normal angiogenesis, callus formation, and bone remodeling during fracture healing, and raise potential concerns about CD163 blockade therapy.


Assuntos
Fraturas do Fêmur , Osteogênese , Animais , Camundongos , Camundongos Endogâmicos C57BL , Calo Ósseo/patologia , Consolidação da Fratura/fisiologia , Fraturas do Fêmur/patologia , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...